Learning DFA Decompositions from Examples and Demonstrations

Niklas Lauffer*, Beyazit Yalcinkaya*, Marcell Vazquez-Chanlatte, Ameesh Shah, and Sanjit A. Seshia
*equal contribution
University of California, Berkeley

A simple gridworld

A simple gridworld

$$
\text { Actions }=\{\wedge \vee \forall H\}
$$

A simple gridworld

Actions $=\{\wedge \forall<\rightarrow\}$
$\operatorname{Pr}(\operatorname{slip} \downarrow)=1 / 32$

A simple gridworld

$$
\operatorname{Pr}(\text { slip } \downarrow)=1 / 32
$$

Specification mining

Learning from demonstrations

Learning decompositions

Monolithic specifications can often be difficult to understand

System-level specifications are often conjunctions of sub-specifications

Inductive bias matters when learning from few demonstrations

Contributions

1. SAT-based encoding for identifying a DFA decomposition of a specific size from labeled examples

Contributions

1. SAT-based encoding for identifying a DFA decomposition of a specific size from labeled examples
2. An algorithm for enumerating the full Pareto-frontier of decompositions

Contributions

1. SAT-based encoding for identifying a DFA decomposition of a specific size from labeled examples
2. An algorithm for enumerating the full Pareto-frontier of decompositions
3. Experimental analysis and extension to learning from demonstrations

Structure of the talk

\author{

1. Technical details
 2. Scalability analysis
 3. Learning from demonstrations
}

State merging via coloring

Positive: \{a\} Negative: $\{\varnothing, \mathrm{b}, \mathrm{ba}, \mathrm{ab}, \mathrm{aab}\}$

State merging via coloring

Positive: \{a\} Negative: $\{\varnothing, \mathrm{b}, \mathrm{ba}, \mathrm{ab}, \mathrm{aab}\}$

State merging via coloring

Positive: \{a\} Negative: \{Ø, b, ba, ab, aab\}

State merging for decompositions

Positive: $\{a\} \quad$ Negative: $\{\varnothing, b, b a, a b, a a b\}$

State merging for decompositions

Positive: $\{a\} \quad$ Negative: $\{\varnothing, b, b a, a b, a a b\}$

State merging for decompositions

Positive: \{a\} Negative: \{Ø, b, ba, ab, aab\}

State merging for decompositions

Positive: \{a\} Negative: \{Ø, b, ba, ab, aab\}

A SAT encoding

Implemented as an extension of existing work*
*Ulyantsev, Vladimir \& Zakirzyanov, Ilya \& Shalyto, Anatoly. (2015). BFS-based Symmetry Breaking Predicates for DFA Identification

A SAT encoding

Implemented as an extension of existing work*

- Each negative example must be rejected by at least one DFA:

$$
\bigwedge_{v \in V_{-}} \bigvee_{k \in[n]} \bigwedge_{i \in\left[m_{k}\right]} x_{v, i}^{k} \Longrightarrow \neg z_{i}^{k} .
$$

*Ulyantsev, Vladimir \& Zakirzyanov, Ilya \& Shalyto, Anatoly. (2015). BFS-based Symmetry Breaking Predicates for DFA Identification

A SAT encoding

Implemented as an extension of existing work*

- Each negative example must be rejected by at least one DFA:

$$
\bigwedge_{v \in V_{-}} \bigvee_{k \in[n]} \bigwedge_{i \in\left[m_{k}\right]} x_{v, i}^{k} \Longrightarrow \neg z_{i}^{k}
$$

- Accepting and rejecting states of individual prefix trees cannot be merged:

Finding the Pareto front of minimality

Structure of the talk

Examples	
Positive	Negative
a	\emptyset
	b
	ba
	ab
	aab

1. Technical details

2. Scalability analysis

3. Learning from demonstrations

Structure of the talk

Examples	
Positive	Negative
a	\emptyset
	b
	ba
	ab
	aab

1. Technical details

2. Scalability analysis
3. Learning from demonstrations

Structure of the talk

\author{

1. Technical details
}
2. Scalability analysis
3. Learning from demonstrations

Overhead comparable to the monolithic baseline

- Baseline, 2 Symbols, 4 DFAs, Time
- This Work, 2 Symbols, 4 DFAs, Time
\square Baseline, 2 Symbols, 4 DFAs, Time CountThis Work, 2 Symbols, 4 DFAs, Time Count

Overhead comparable to the monolithic baseline

- Baseline, 2 Symbols, 4 DFAs, Time
-- Baseline, 4 Symbols, 2 DFAs, Time
- This Work, 2 Symbols, 4 DFAs, Time
= = This Work, 4 Symbols, 2 DFAs, TimeBaseline, 2 Symbols, 4 DFAs, Time Count Baseline, 4 Symbols, 2 DFAs, Time Count This Work, 2 Symbols, 4 DFAs, Time Count This Work, 4 Symbols, 2 DFAs, Time Count

Structure of the talk

\author{

1. Technical details
}
2. Scalability analysis
3. Learning from demonstrations

Learning from demonstrations

$\operatorname{Pr}(\operatorname{slip} \downarrow)=1 / 32$

Demonstration Informed Specification Search (DISS)

Learning from Demonstrations

Demonstration Informed Specification Search (DISS)

A helpful inductive bias from decompositions

 ever touch ㅆㅆ, you must then touch \square before reaching ${ }^{[3}$.

A helpful inductive bias from decompositions

Identified monolithic DFA (incorrect)
Reach $\overline{3}$ while avoiding $\mathbb{1}$. If you ever touch \times, you must then touch \square before reaching ${ }^{[3}$.

A helpful inductive bias from decompositions

Reach 3 while avoiding \mathbb{C}. If you ever touch \times, you must then touch \square before reaching $\boldsymbol{\pi}$.

Identified monolithic DFA (incorrect)

Identified DFA decomposition (correct)

Conclusion

- Known symmetry-breaking optimization still missing from the encoding
- Easy to extend to disjunctions and boolean combinations of DFAs

