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Abstract. This paper considers the problem of learning history depen-
dent task specifications, e.g. automata and temporal logic, from expert
demonstrations. Unfortunately, the (countably infinite) number of tasks
under consideration combined with an a-priori ignorance of what histori-
cal features are needed to encode the demonstrated task makes existing
approaches to learning tasks from demonstrations inapplicable. To ad-
dress this deficit, we propose Demonstration Informed Specification Search
(DISS): a family of algorithms parameterized by black box access to (i)
a maximum entropy planner and (ii) an algorithm for identifying con-
cepts, e.g., automata, from labeled examples. DISS works by alternating
between (i) conjecturing labeled examples to make the demonstrations
less surprising and (ii) sampling concepts consistent with the current
labeled examples. In the context of tasks described by deterministic finite
automata, we provide a concrete implementation of DISS that efficiently
combines partial knowledge of the task and a single expert demonstration
to identify the full task specification.

1 Introduction

Expert demonstrations provide an accessible and expressive means to informally
specify a task, particularly in the context of human robot interaction. In this
work, we study the problem of inferring, from demonstrations, tasks represented
by formal task specifications, e.g., automata and temporal logic. The study of task
specifications is motivated by their ability to (i) encode historical dependencies,
(ii) incrementally refine the task via composition, and (iii) be semantically robust
to changes in the workspace, e.g., changing the transition probabilities does not
change the set paths that satisfy the specification [14].

1.1 Related Work The problem of learning objectives by observing an
expert has a rich and well developed literature dating back to early work on
Inverse Optimal Control [6] and more recently via Inverse Reinforcement Learning
(IRL) [9]. In IRL, an expert demonstrator optimizes an unknown reward function
by acting in a stochastic environment. The goal of IRL is to find a reward function
that explains the agent’s behavior. A fruitful approach has been to cast IRL as a
Bayesian inference problem to predict the most probable reward function [10].
To make this inference robust to demonstration/modeling noise, one commonly
appeals to the principle of maximum causal entropy [5, 19, 18]. Intuitively, this
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results in a forecasting model that is no more committed to any given action
than the data requires.

While powerful, traditional IRL provides no principled mechanism for com-
posing the resulting reward artifacts and requires the relevant historical features
(memory) to be a-priori known. To address this deficit, recent works have proposed
learning Boolean task specifications, e.g. logic or automata, which admit well de-
fined compositions and explicitly encode temporal constraints. The development
of this literature mirrors the historical path taken in reward based research, with
works adapting optimal control [7, 2], Bayesian [11, 17], and maximum entropy
approaches [14, 15] IRL approaches.

A key difficulty for the task specification inference from demonstrations
literature is how to search an intractably large (often infinite) concept class.
In particular, and in contrast to the reward setting, the discrete nature of
automata and logic, combined with the assumed a-priori ignorance of the relevant
memory required to describe the task, makes existing gradient based approaches
either intractable or inapplicable. Instead, current literature either enumerates
concepts [14, 2, 11, 17] or hill climbs via simple probabilistic mutations [7, 1].

The major contribution of this paper is to systematically reduce the problem
of learning from demonstrations into a series of supervised task specification
identification problems, e.g., finding a small Deterministic Finite Automta (DFA)
that is consistent with a set of positive and negative strings [3][4]. The result is a
principled way to sample tasks given a candidate task. This insight is integrated
into a variant of simulated annealing [12] for guided hill climbing.

Fig. 1

1.2 Motivating Example Consider an
agent operating in the 8x8 grid world as shown
in Fig 1. The agent can attempt to move up,
down, left, or right. With probability 1/32,
wind will push the agent down, regardless of
the agent’s action. The black path is the prefix
of an episode, in which the agent attempts to
move left, slips into the blue tile (�), visits a
brown tile (�), and then proceeds downward.
Given the black demonstration, call ξb, and
the prior knowledge that the agent’s task
implies that it will (i) avoid red tiles (�) and
(ii) try to reach a yellow tile (�), what task,
as a DFA, explains the agent’s behavior?

Upon inspecting the demonstration, one might be surprised that the agent
goes out of its way to visit �. For example, why would the agent not take
the red dashed path directly to �? One might conjecture that the agent’s true
task requires visiting � after visiting �. Similarly, one may notice that the
demonstration is less surprising if the dotted extension of ξb ending in � is a
positive example of the task. Finally, appealing to Occam’s razor, one might
search for a simple DFA consistent with the conjectured labels. In this case, the
demonstrated task is in fact one of the “simplest” DFAs, shown on the right in



Demonstration Informed Specification Search 3

red red

yellowstart start
brown

red red

blue

blue

red

yellow

yellow

Fig. 2: DFAs with stuttering semantics, i.e., if a transition is not provided, a self
loop is assumed. The accepting states are marked with a concentric circle and
the initial state is labeled start. A sequence of inputs, e.g. colored, is accepted
if the final state is accepting. The left DFA encodes: “Avoid � and eventually
reach �”. The right DFA adds to the left DFA the rule: “Visitations of � and �
must be separated by a visit to �.”

Fig 2. As we shall later see, DISS systematizes this line of reasoning and is able
to learn explanatory DFAs, even without the prior task knowledge used in this
motivating example!

1.3 Contributions and Algorithm Overview This work contributes a
family of approximate algorithms called Demonstration Informed Specification
Search (DISS) for the task specification inference from demonstrations problem.

labeled trace
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Fig. 3: Overview of Demonstration Informed Specification Search

DISS assumes (i) access to a multi-set of expert demonstrations: ξ∗1 , . . . ξ∗m, (ii)
black box access to an identification algorithm, I, that maps positively/negatively
labeled paths to a distribution over concepts and (iii) black box access to a planner
that estimates the probability of a path given a candidate task (see Sec 3). DISS
operates by cycling between three components (shown in Fig 3):

1. Candidate Sampler: A candidate task, ϕ, is sampled from I(X), where X
is a collection of labeled examples (initialized to the empty set).
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2. Surprise Guided Sampler: The planner is used to find a path, where
toggling whether the path is a positive/negative example of the task makes
the expert demonstrations less surprising.

3. Example Buffer: Given previously seen data, the example buffer yields a
set of positive and negative example paths.

In the sequel, we will (i) formalize the problem statement, (ii) propose a
agent model based on the extensive literature on maximum causal entropy agent
models, (iii) discuss how to find surprising paths given our planner, and (iv)
propose a variant of simulated annealing (implemented through the example
buffer) to approximately solve our task inference from demonstration problem.

The resulting algorithm is agnostic to the underlying concept class and
dynamics. The overhead introduced by DISS is only proportional to the
number of demonstrations. The rest of the complexity is relativized in terms
of the maximum entropy planner and concept identifier.

Finally, we provide a concrete implementation of DISS [16]. An example
identification algorithm for DFAs and a maximum entropy planner for simple
gridworlds are also included. Using this implementation, we perform two exper-
iments validating that DISS indeed enables efficiently searching for tasks that
explain the demonstrations even in large/unstructured concept classes like DFAs
given unlabeled and potentially incomplete demonstrations.

Remark 1. The choice of DFAs as the concept class for our experiments was mo-
tivated by three observations. First, DFAs explicitly encode memory, making the
contribution of identifying relevant memory more clear. Next, to our knowledge,
all other techniques for learning finite path properties from demonstrations focus
on syntax defined concept classes. Thus learning DFAs is understudied in this
context. Third, DFAs constitute a very large and mostly unstructured concept
class. Therefore, DFAs facilitate studying the efficiency of DISS without introduc-
ing too much user defined inductive biases. By comparison, existing techniques
for learning task specifications from demonstrations all use use syntactically
defined logics each with their own inductive biases. Thus direct comparisons
would conflate search efficiency with the inductive biases of the concept classes.

2 Preliminaries and Problem Statement

2.1 Dynamics Model We model the expert demonstrator as operating in a
Markov Decision Process (MDP), M = (S,A, s0, δ), where (i) S denotes a finite
set of states, (ii) A(s) denotes the finite set of actions available at state s ∈ S, (iii)
s0 is initial state, (iv) δ(s′ | a, s) is the probability of transitioning from s to s′
when applying action a ∈ A(s). We will make two additional assumptions about
M . First, we assume a unique (always reachable) sink state, i.e., δ($ | a, $) = 1,
denoting “end of episode”. Second, we shall assert the Luce choice axiom, which
requires that each action, a ∈ A(s), be distinct, i.e., no actions are interchangeable
or redundant at a given state [8].
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A path, ξ, is an alternating sequence of states and actions starting with s0:

ξ = s0
a0−→ s1

a1−→ s2
a2−→ . . . . (1)

Any path, ξ, can be (non-uniquely) decomposed into a prefix, ρ, concatenated
with a suffix, σ, denoted ξ = ρ · σ. We allow σ to be of length 0. The last state of
ξ is denoted by last(ξ). A path is complete if it contains $ exactly once, and thus
last(ξ) = $. We denote by Path$ the set of all complete paths, and by Path the
set of all prefixes of Path$, i.e., paths that contain $ at most once.

2.2 Task Specifications Next, we develop the machinery to describe the set
of paths that constitute performing a given task. In particular, a task specification
or task is a subset of paths,

ϕ ⊆ Path$. (2)
We refer to a collection of task specifications, Φ, as a concept class. Given a
concept class, the function size is a complexity measure that maps tasks to a
description length,

size : Φ→ R≥0. (3)

Example 1. We formalize the concept class of our motivating example. Let (i)
Σ = {�,�,�,�,�} denote an alphabet, (ii) D1 and D2 denote the left and
right DFA over Σ shown in Fig 2, and (iii) ϕ1 and ϕ2 denote the set of paths
whose corresponding color sequence is accepted by D1 and D2 resp. Define Φreg
as the set of all tasks represented by a DFA over Σ, i.e. regular languages, and
define Φ′reg to be the set of regular languages that imply (are subsets of) ϕ1. Note
that ϕ1, ϕ2 ∈ Φ′reg ( Φreg. Next, let |ϕ| denote the number of non-stuttering (not
self loop) edges in the minimal DFA for ϕ’s multi-graph. Finally, for Φreg define
size(ϕ) def= |ϕ| and for Φ′reg define size′(ϕ) def= |ϕ| − |ϕ1|. For example, size(ϕ2) = 6,
and size′(ϕR) = 6− 3 = 3.

A labeled example is tuple, x = (ξ, l), corresponding to a complete path and
a binary label, l ∈ {0, 1}. A collection of labeled examples, X = x1, . . . , xn, is
consistent with a task, ϕ, if:

∀xi = (ξi, li) . (ξi ∈ ϕ) ⇐⇒ (l = 1). (4)

An identification algorithm, I, maps a collection of labeled examples, X to a
distribution over consistent tasks in Φ or ⊥ if no consistent task exists.

Example 2. Let ξb and ξr be the completed black and red paths shown in Fig 1
and define Xbg = {(ξb, 1), (ξr, 0)}. ϕ2 is consistent with Xbg and ϕ1 is not.

2.3 Policies and Demonstrations A (history dependent) policy, π(a | ξ), is
a distribution over actions, a, given a path, ξ, where a ∈ A(last(ξ)). A policy is
(p, ϕ)-competent if:

psatϕ(π) def= Pr(ξ ∈ ϕ | π,M) = p (5)
A demonstration, is a path, ξ∗, generated by a employing a policy π in an

MDP M , ξ ∼ (π,M).
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Task Inference from Demonstrations Problem (TIDP): Let a M , Φ,
and P be a fixed MDP, concept class, and task prior, respectively. Further, let
π∗ be a (p∗, ϕ∗)-competent policy, π∗, where p∗, ϕ∗, and π∗ are all unknown.
Given a multi-set of i.i.d. demonstrations, ξ∗1 , . . . ξ∗m ∼ (π∗,M), find:

ϕ ∈ arg max
ψ∈Φ

Pr(ξ∗1 , . . . ξ∗m | ψ,M) · P (ψ |M). (6)

Of course, by itself, the above formulation is ill-posed as Pr(ξ∗1 , . . . ξ∗m | M,ϕ) is
left undefined. What remains is to derive a suitable agent model and discuss how
to manipulate likelihoods in this model.

3 Task Motivated Agents

In the sequel, we follow [15] and propose formalizing the above problem statement
by first estimating p∗ given a candidate task, ϕ, and then assigning a bias-
minimizing belief of generating the demonstrations given ϕ.

3.1 Maximum Causal Entropy Policies We start by defining the causal
entropy on arbitrary sequences of random variables. Let X1:i

def= X1, . . . ,Xi and
Y1:i

def= Y1, . . . ,Yi denote two sequences of random variables. The probability of
X1:i causally conditioned on Y1:i is:

Pr(X1:i ‖ Y1:i)
def=

i∏
j=1

Pr(Xj | X1:j−1,Y1:j). (7)

The causal entropy of X1:i given Y1:i is then defined as,

H(X1:i || Y1:i)
def= −E
X1:i,Y1:i

[ln Pr(X1:i ‖ Y1:i)] (8)

Using the chain rule, one can relate causal entropy to (non-causal) entropy,
H(X | Y) def= EX [− ln Pr(X | Y)] via H(X1:i || Y1:i) =

∑i
t=1 H(Xt | Y1:t,X1:t−1).

This relation shows that: (1) Causal entropy is always lower bounded by non-
causal entropy (and thus non-negative). (2) Causal entropy can be computed
“backward in time”. Intuitively, and contrary to non-causal entropy, causal entropy
does not condition on variables that have not been revealed, e.g., on events in the
future. This makes causal entropy particularly well suited for robust forecasting in
sequential decision making problems, as the agents cannot observe the future [18].

We define the τ -length path causal entropy of a policy, π as:

Hτ (π) def= H(A1:τ ‖ S1:τ ), (9)

where we denote the sequences of action and state random variables, A1:τ
def=

A1, . . . ,Aτ and S1:τ
def= S, . . . ,Sτ , generated by (π,M).
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For MDPs, the unique policy, πϕ, that maximizes entropy subject to being
(p, ϕ)-competent is given by the following smoothed Bellman-backup:

ln πλ(a | ξ) def= Qλ(ξ · a)− Vλ(ξ)

Qλ(ξ · a) def= E
ξ′

[
Vλ(ξ′) | a, ξ

]
Vλ(ξ) def=

{
λ · [ξ ∈ ϕ] if ξ is complete
log
∑
a∈A(last(ξ)) exp

(
Qλ(ξ · a)

)
otherwise

, (10)

where λ, called the rationality, is set such that psatϕ(πλ) = p. When clear from
context, we will often write Vϕ, and Qϕ, or even just V and Q.

Remark 2. psatϕ(πλ) increases monotonically in λ and thus can be efficiently
calculated to arbitrary precision using binary search.

Remark 3. The competency of the agent can be treated as a hyper-parameter
or estimated empirically, e.g., pϕ ≈ 1/m

∑m
i=1[ξ ∈ ϕ]. The former is useful when

given on a few demonstrations and the latter is useful when given a large number
of demonstrations.

3.2 Explainability of a task The surprise (or self-information) of a demon-
stration is defined as:

h(ξ | π,M) def= − ln Pr(ξ | π,M). (11)

The surprise of a collection of demonstrations is the sum of the surprise of each
demonstration: h(ξ∗1 , . . . ξ∗m | π,M) def=

∑m
i=1 h(ξi | π,M). Note that the likelihood

of i.i.d., demonstrations from (π,M) is simply exp(−h(ξ∗1 , . . . ξ∗m)). Given a fixed
MDP, M , and a fixed collection of demonstrations, ξ1, . . . , ξm, we define the
surprise of a task, ϕ, as:

h(ϕ) def= h(ξ∗1 , . . . ξ∗m | πϕ,M) (12)

Thus, solving a TIDP requires minimizing h and the negative log prior, which
w.l.o.g. can be taken as size(ϕ).

4 Manipulating Surprise

In the sequel, we seek to study how changing a task ϕ changes the corresponding
surprise, h(ϕ), and thus the likelihood of observing the demonstrations.

4.1 Prefix Tree Perspective To facilitate this, we will find it useful to
re-frame paths as either deviating or conforming to the demonstrations. To
start, denote by T = (N,E) the prefix tree (or trie) of the demonstrations,
ξ∗1 , . . . ξ

∗
m, where N and E are the nodes and edges of T , respectively. Each node
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Fig. 4: Prefix tree with 12 nodes for the two paths shown on the left.

i ∈ N , corresponds to a prefix, ρi, of at least one of the demonstrations. An edge
connects parent, i, to child, c, if ρc is the one action (or state) extension of ρi,
i.e., ρc = ρiσ, where σ is a path of length 1. For each edge, (i, j) ∈ E, we define
the edge traversal count, #(i,j), as the number of times prefix ρj appears in the
demonstrations. The set of unique demonstrations maps directly to the leaves of
T , where ρi is a demonstration for each leaf v. A node is said to be an ego node if
it corresponds to selecting an action, and an environment (env) node otherwise.

We say a path, ξ, conforms to the demonstrations if there is a node i such
that, ρi = ξ. A path deviates from the demonstrations if it is not conforming.
The pivot of a deviating path, ξ, is the node corresponding to the longest prefix
of ξ that conforms to the demonstrations. Note that it is possible to pivot at the
leaves of the tree, i.e., the longest prefix is a demonstration.

Example 3. Example demonstrations and the correspondng prefix tree are illus-
trated in Fig 4. Note that it is possible to pivot at every node except node 2,
since both possibilities (slipping/not slipping) appear in the demonstrations.

4.2 Proxy Surprise Next, observe that because weighted averaging and LSE
are commutative, one can aggregate the values of a set of actions or set of states
(environment actions) that deviate at pivot i. In particular let Ai and Sj denote
the conforming actions and conforming states at an ego node i and an env node
j, respectively. The pivot value, of a node i is defined as:

Vϕi
def=
{

ln
∑
a/∈Ai

exp
(
Qϕ(ρi · a)

)
if i is an ego node,

Es[Vϕ(ρi · s) | s /∈ Si, ρi,M ] if i is an env node,
(13)

We shall denote by Vϕ ∈ RN the node-indexed vector of pivot values associated
with task ϕ under our maximum entropy agent model. Crucially, the pivot values
entirely determine (see Fig 5) the values of the states and actions visited by
the demonstrations via (10). Namely, let Q̂k(V) and V̂k(V) denote the derived
action and state value at node k in the prefix tree, and let Pr(i k | V) denote
the probability of transitioning from node i to node k under the local maxEnt
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Fig. 5: Computation tree of Q̂ and V̂ values for each node of prefix tree given by
soft Bellman backup (10) and node pivot values, V.

policy for prefix tree corresponding to V. The proxy surprise, ĥ, is given by:

ĥ(V) def= −
∑

(i,j)∈E

#(i,j) · ln Pr(i j | V),

ln Pr
(
i k | V, (i, k) ∈ E

)
=
{

Pr(ρk | ρi, a,M) if i is env,
Q̂k(V)− V̂i(V) if i is ego.

(14)

4.3 Leveraging proxy gradients Unlike the surprise, h(ϕ), the proxy
surprise, ĥ, is differentiable with respect to the pivot values V. One can interpret
∇ĥ(Vϕ) then as suggesting how to modify the pivot values in order to make
the demonstrations less surprising. A natural question then is how to adapt ϕ
given this knowledge. Observe the following two propositions (with proof sketches
provided in Sec 8):

Proposition 1 (Pivot values respect subsets). Let ξ be a complete path that
pivots at node i. If ϕ ( ψ and ξ ∈ ψ \ ϕ, then Vϕi < Vψi .

Proposition 2 (∇ĥ determined by prefix tree path probabilities).

∂ĥ

∂Vk
=
∑

(i,j)∈E
i is ego

#(i,j) ·
(

Pr(i k | V)− Pr(j  k | V)
)

(15)

Prop 1 suggests that to adjust the pivot value, Vi, in a manner that decreases
surprise, one can simply take a path, ξ, that pivots through i such that:

ξ ∈ ϕ ⇐⇒ ∂ĥ

∂Vi
> 0, (16)

and negate its satisfaction under ϕ.
Prop 2 illustrates that (i) the gradients are simple to compute given black box

access to the policy on the prefix tree and (ii) sampling from πϕ yields paths with
a large effect on the gradient. To see point (ii), consider extending the prefix tree
to contain the most likely paths after pivoting and apply Prop 2. The gradient
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task ϕ
MaxEnt
Planner

Pivot & Path
Sampler

psatϕ πϕ

Demos ξ∗1 , . . . ξ∗m
labeled example

(ξ′, ξ′ /∈ ϕ)

Estimate
Competency

Fig. 6: Overview of surprise guided sampler.

Algorithm 1 Surprise Guided Sampler.
1: procedure SGS(ϕ,X, T ,M, β)
2: Compute πϕ given M and T . I MaxEnt Planning.
3: Let D be the distribution over pivots s.t. Pr(pivot i) ∝ exp

(
− 1
β

∣∣∣ ∂ĥ∂Vi

∣∣∣).
4: Sample a pivot i ∼ D and a path ξ ∼ (πϕ,M) such that:
5: a) ξ pivots at i.
6: b) ξ ∈ ϕ ⇐⇒ ∂ĥ

∂Vi
> 0.

7: c) ∃ϕ′ ∈ Φ s.t. ϕ′ is consistent with X ∪ {(ξ, ξ /∈ ϕ)}.
8: return ξ I Conjecture mis-labeled path.
9: end procedure

w.r.t. the pivot value corresponding to the newly introduced leaves is their path
probability and thus their probability of being sampled after pivoting! Using
these insights we propose surprise guided sampling (Alg 1) which samples a path
to relabel based on (i) how likely it is under πϕ and (ii) the magnitude and
sign of the gradient at the corresponding pivot. Combined with an identification
algorithm, I, repeated applications of Alg 1 yields an infinite (and stochastic)
sequence of tasks resulting from incrementally conjecturing mis-labeled paths.

Remark 4. Alg 1 only requires a black box maximum entropy (MaxEnt) planner
to enable assigning edge probabilities, Pr(i  j | V), and sampling suffixes
given a pivot. If the satisfaction probability of an action is also known, i.e.,
Prξ′(ξ · ξ′ ∈ ϕ | ξ,M, πϕ), then one can more efficiently sample suffixes using
Baye’s rule and the policy πϕ.

5 Demonstration Informed Specification Search (DISS)

In this section, we take the insights developed in the previous sections and
propose the DISS algorithm - a variant of simulated annealing for quickly finding
probable task specifications. At a high level, Simulated Annealing (SA) [12] is
a probabilistic optimization method that seeks to minimize an energy function
U : Z → R ∪ {∞}. To run SA, one requires three ingredients: (i) a cooling
schedule which determines a monotonically decreasing sequence of temperatures,
(ii) a proposal (neighbor) distribution q(z′ | z), and (iii) a reset schedule, which
periodically sets the current state, zt, to one of the lowest energy candidates seen
so far.
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A standard simulated annealing algorithm then operates as follows: (i) An
initial z0 ∈ Z is selected (ii) Tt is selected based on the cooling schedule. (iii)
A neighbor z′ is sampled from q(· | zt). (iv) z′ is accepted (zt+1 ← z′) with
probability:

Pr(accept | z′, zt) =
{

1 if U(z′) < U(z)
min

{
1, exp

(
U(z)−U(z′))

Tt

)}
otherwise

, (17)

and rejected (zt+1 ← zt) otherwise. (v) Finally, if a reset set is trigger, zt+1 is
sampled from the minimum energy candidates, e.g., uniform on the argmin.

As previously stated, we propose a variant of simulated annealing adapted
for our specification inference problem. We will start by assuming the posterior
distribution on tasks takes the form:

Pr(ϕ | ξ∗1 , . . . ξ∗m,M) ∝ e−U(ϕ), (18)

where the energy, U , is given by:

U(ϕ) def= size(ϕ) + θ · h(ϕ), (19)

where θ ∈ R determines the relative weight of the surprise. That is, we appeal
to Occam’s razor and assert that the task distribution is exponentially biased
towards simpler tasks, where simplicity is measured by the description length of
the task, size(ϕ), and the description length of ξ∗1 , . . . ξ∗m under (πϕ,M).

Remark 5. One might set θ > 1 when the analysis is done for a high-level
abstraction of the “true” MDP, and thus the low-level surprise, which includes
the randomness of the low level controller, may be non-trivially larger per high-
level time step.

Using the language of SA, we define DISS as follows: (i) z ∈ Z is a tuple,
(X,ϕ), of labeled examples and a task specification. (ii) z0 = (∅,⊥). (iii) the
proposal distribution, q(X ′, ϕ′ | X,ϕ) is defined to first sample a concept using
an identification map, ϕ′ ∼ I(X), then run SGS on ϕ′ to conjecture a labeled
path ξ, yielding X ′ = X ∪ {(ξ, ξ /∈ ϕ′)}. (iv) resets occur every κ ∈ N time
steps. If a reset is triggered, Xt+1 is sampled from softmini≤tU(ϕi), and ϕt+1 is
sampled from I(Xt+1).

6 Experiments

In this section, we illustrate the effectiveness of DISS by having it search for a
ground truth specification, represented as a DFA, given the expert demonstrations,
ξb, ξg, from our motivating example (shown in Fig 1). The (dotted) green path,
ξg, goes directly �. The (solid) black path, ξb, immediately slips into �, visits �,
then proceeds towards �. This path is incomplete, with a possible extension, σb,
shown as a dotted line. The ground truth task is the right DFA in Fig 2.
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Fig. 7

We consider two specification inference problems by varying the concept class
and the provided demonstrations. These variants respectively illustrate that (i)
our method can be used to incrementally learn specifications from unlabeled
incomplete demonstrations and (ii) the full specification can be learned given
unlabeled complete demonstrations.

1. Monolithic: ξg and ξb · σb are provided as (unlabeled) complete demonstra-
tions. The concept class is Φreg from Example 1.

2. Incremental: ξb is provided as an (unlabeled) incomplete demonstration.
The concept class is Φ′reg from Example 1.

The surprise weight, θ, is set to 1 for both variants. Finally, two additional
inductive biases, which empirically proved necessary for optimizing the random
pivot baseline, are applied: (i) we remove white tiles, �, from labeled examples
(ii) we transform sequences of repeated colors into a single color thus biasing
towards DFA that do not count. For example, ������ 7→ ���.

DISS parameters. Our implementation of DISS uses SGS temperature
β = 1/100, resets every 10 iterations, and uses the following cooling schedule:

Tt = 100 · (1− t/100) + 1. (20)

For concept identification, I, we adapt an existing SAT-based DFA identification
algorithm [13] to enumerate the first 20 consistent DFAs (ordered by size). A
DFA is then sampled from softminϕ(size(ϕ)). For maximum entropy planning,
we use the Binary Decision Diagram based approached proposed in [15] with
a planning horizon of 15 steps. Finally, because our experiments operate with
one or two demonstrations, the competency of the maxent policy is taken to be
closest achievable competency to 4/5, e.g., for ϕ = ∅, the competency is 0, and
for ϕ1 the competency is 4/5.

Baselines. As mentioned in the introduction, existing techniques for learning
specifications from demonstrations use various syntactic concept classes, each
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with their own inductive biases. To normalize the algorithms, we implemented two
DFA adapted baselines that act as proxies for the enumerative and probabilistic
hill climbing families of existing work:

1. Prior-ordered Enumeration. This baseline uses the same SAT-based DFA
identification algorithm to find the first N DFAs, ordered by prior probability,
i.e., size. As an alternative to DISS’s competency assumption, we allow the
enumerative baseline to restrict the search to task specifications that accept
the provided demonstrations.1

2. Random Pivot DISS. This baseline uses DISS with SGS temperature,
β =∞. This ablation results in a (labeled example) mutation based search
with access to the same class of mutations as DISS, but samples pivots
uniformly at random, i.e., no gradient based bias. Note that this variant
still samples suffixes conditioned on the sign of the gradient, and thus the
mutations are still informed by the surprise.

6.1 Results and Analysis To simplify our analysis, we present time in
iterations, i.e., number of sampled DFAs, rather than wall clock time. This is
for two reasons. First, for each algorithm, the wall clock-time was dominated by
synthesizing maximum entropy planners for each unique DFA discovered, but
the choice of planner is ultimately an implementation detail. Second, because
many DISS iterations correspond to the same DFAs (due to resets and rejections)
the enumeration baseline explored significantly more unique DFAs than DISS (a
similar effect occurs with the random pivot baseline, since it different pivots give
more diverse example sets). Thus, using wall clock-time would skew the results
below in DISS’s favor.2

Fig 7a and Fig 7b show the minimum energy DFA for the monolithic and
incremental experiments respectively. We see that for both experiments, DISS was
able to significantly outperform the baselines (recall that energy is the negative
log of the probability), with the incremental experiment requiring only a few (<
6) iterations to find a probable DFA! Furthermore, in addition to finding the
most probable DFAs much faster than the baselines, DISS also found more high
probability DFAs.

Next we analyze the DFAs learned by DISS. The ground truth DFA (center)
and the most likely DFAs found by DISS for each experiment (left and right) are
shown in Fig 8. We observe that for both experiments, DISS is able to learn that
if the agent visits �, it needs to visit � before �! Furthermore, the monolithic
DFA is impressively able to learn that � leads to a sink state, a feat that requires
quite a number of negative examples to illicit from our size-based DFA sampler.
In fact, this discovery is responsible for the large drop in energy at 15 iterations
in the monolithic experiment.
1 For the incremental experiment, a counterexample loop is used add labeled examples
that bias the DFAs towards implying ϕ1.

2 Nevertheless, for the monolothic experiment, the wall clock times for DISS, random
pivoting, and enumeration were 542s, 764s, and 617s respectively. Similarly, for the
incremental experiment the respective times were 353s, 464s, and 820s.
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Fig. 8: (center) Ground truth DFA. Most probable DFA found by DISS in the
monolithic experiment (left) and the incremental experiment (right).

Nevertheless, our learned DFAs differ from ground truth, particularly when
it comes to the acceptance of strings after visiting �. We note that a large
reason for this is that our domain and planning horizon make the left most �
effectively act as a sink state. That is, the resulting sequences are indistinguishable,
with many even having the exact same energy. In Fig 8, we make such edges
lighter, and note that the remainder of the DFAs show good agreement with the
ground truth. Finally, while impressive, this points to a fundamental limitation of
demonstrations. Namely, if two tasks have very correlated policies in a workspace,
then without strong priors or side information, one is unable to distinguish the
tasks. For example, if a task requires the agent to avoid �, but no � are shown
in the workspace, then one cannot hope to learn this aspect of the task.

7 Conclusion

This paper considered the problem of learning history dependent task specifica-
tions, e.g. automata and temporal logic, from expert demonstrations. We showed
empirically demonstrated how to efficiently explore intractably large concept
classes such as deterministic finite automata for find probable task specifications.
The proposed family of algorithms, Demonstration Informed Specification Search
(DISS), requires only black box access to (i) a Maximum Entropy planner and
(ii) an algorithm for identifying concepts, e.g., automata, from labeled examples.
While we showed concrete examples for the efficacy of this approach, several
future research directions remain. First and foremost, research into faster and
model-free approximations of maximum entropy planners would enable a much
larger range of applications and domains. Similarly, while large, the demonstrated
concept class was over a small number of pre-defined atomic predicates. Future
work thus includes generalizing to large symbolic alphabets and studying more ex-
pressive specification formalisms such as register automata, push-down automata,
and (synchronous) products of automata.

8 Proof Sketches

Proof (Prop 1). Follows inductively from the monotonicity of E,
∑

, and ln. �
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Before proving Prop 2 we first prove the following lemma.

Lemma 1. For any node, i, in the prefix tree,

∂

∂Vk
�i(V) = Pr(i k | V),

where � denotes V̂ for ego nodes and Q̂ for env nodes.

Proof. For any edge (a, b), observe that if a is an environment node, then Pr(a 
b | V) is a constant, denoted qab. Next, observe that because the nodes are
arranged as a tree either: (1) k is not reachable from i or (2) only a single edge,
call (i, j), can reach k from i. Thus,

∂Q̂i
∂Vk

def= ∂

∂Vk

∑
(a,b)∈E
i=a

qib · V̂b(V)

= Pr(i j | V) ·
{

0 if Pr(i k) = 0
∂
∂Vk

V̂j(V) otherwise,

(21)

Similarly, note that because the derivative of logsumexp is the softmax function,
for any ego node i,

∂V̂i
∂Vk

def= ∂

∂Vk
log

∑
(a,b)∈E
i=a

Q̂b(V)

=
{

0 if Pr(i k) = 0
eQ̂j(V)−V̂i(V) · ∂

∂Vk
Q̂j(V) otherwise,

(22)

where again, j denotes the (potential) unique child of i that can reach k. Finally,
observe that by definition eQ̂j(V)−V̂i(V) = Pr(i  j | V), using the maximum
entropy policy induced by V. Substituting into (22), we see that the lemma
follows by induction. �

Proof (Prop 2). Recall that the probability of traversing an environment edge is
constant w.r.t V. Thus, inspecting (14) we see that it suffices to prove that for
any ego edge, (i, j),

∂

∂Vk
ln Pr(i j | V) = Pr(i k | V)− Pr(j  k | V).

Recall that by definition, if i is ego, then ln Pr(i j | V) = Q̂i(V)− V̂i(V). Thus,
the proposition follows directly from Lemma 1. �
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Algorithm 2 Demonstration Informed Specification Search.
1: procedure DISS((ξ1, . . . , ξm),M, θ,N, κ)
2: Compute T given (ξ1, . . . , ξm). I Create prefix tree.
3: Φ← ∅.
4: for t in 1, . . . , N do
5: if t ≡ 0 (mod κ) then I Reset on multiples of κ.
6: X ∼ arg maxψ∈Φ U(ψ)
7: dX ← ∅ I Defined as ∅ if Φ = ∅.
8: end if
9: X ′ ← update(X ′, dX) I Newer label wins under conflict.
10: ϕ′ ∼ I(X ′). I Sample candidate task.
11: Φ← Φ ∪ {ϕ′}. I Update visited specs.
12: T ← cooling_schedule(t) I User defined.
13: dU ← U(ϕ′)− U(ϕ)
14: α ∼ Uniform(0, 1)
15: if dU < 0 or exp(−dU/T) ≤ α then
16: (ϕ,X)← (ϕ′, X ′)
17: dX ← {SGS(ϕ, T,M)} I Conjecture labeled example.
18: else
19: dX ← ∅ I Reject proposal.
20: end if
21: end for
22: return Φ
23: end procedure


